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Abstract: We study the dynamics of probe D7 D7 flavor probe branes in the background

of near extremal D5 branes. This model is a holographic dual to a gauge theory with

spontaneous breaking of a U(Nf )L × U(Nf )R chiral symmetry. The spectrum of two such

D7 D7 embeddings, contains a single massive 4D meson coming from the world volume

U(1) gauge field, the pion, and a single massive 4D scalar meson coming from fluctuations

of the embedding of the brane. In addition, there are continuum five dimensional states due

to the finite height of the effective potential in the radial direction. We investigate baryons

in this model, and find that the size is stabilized due to the Chern-Simons term in the D7

world volume action. The model admits a Hagedorn temperature of 1
2πR

where R is the

radius parameter in the D5 branes metric. We investigate the pattern of chiral symmetry

breaking in the deconfined phase as a function of the asymptotic separation of the branes

L. We find that for π
3R < L / 1.068R that chiral symmetry is restored, and that chiral

symmetry is broken for L outside this window. We further argue that the solutions with

L < π
3 are only classically stable, and in fact no D7 embedding exists with these boundary

conditions.
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1 Introduction

QCD at strong coupling has several properties of interest: Confinement, the existence and

spectrum of bound states, and chiral symmetry breaking to name a few. Studying these

phenomena from the standpoint of quantum field theory is difficult, and impossible when

confined to the realm of perturbation theory.

Recently, much progress has been made by constructing brane background models

with a tunable parameter, such that in one limit they become pure (weakly coupled)

SU(Nc) QCD, and in the opposite they become a weakly coupled string theory [1]. Such

constructions allow one to study a model that is in the same universality class as pure YM

theory via gauge gravity duality [2] (for a review see [3]). Karch and Katz [4] introduced

a holographic dual of dynamical flavored fundamental quarks by adding flavor probe D-

branes into the gravity background. By taking the number of flavor branes to be much

smaller than Nc, Nf ≪ Nc, the backreaction on the background is avoided. This is the

analog of the quenched approximation in the gauge theory. This was done originally for

non-confining backgrounds. In [5] a similar scenario was proposed in a confining setup.1

The incorporation of chiral symmetry and its spontaneous breakdown has been done in the

1For references of additional papers that discussed holographic dynamical quarks see [6].
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seminal papers of Sakai and Sugimoto (SS)[7, 8]. Their model which has been extensively

studied in the literature.

In the SS model, the background is taken to be a near extremal D4 with one of the

spatial coordinates compactified, which we will call x4, and its radius of compactification

is Rx4
. For energies E ≪ 1

Rx4

one expects 4D dynamics contaminated with KK modes. In

the low temperature regime, the correct place to put the blackening factor is in front of

the dx2
4 component of the metric, giving the u,x4 plane the geometry of a (semi-infinite)

“cigar”. The probe flavor branes are taken to be (Nf ) D8 branes, and are parallel to

some combination of the radial direction, parameterized by u, and x4. In this model, the

realization of chiral symmetry breaking U(Nf )R×U(Nf )L → U(Nf ) is geometric, and easy

to visualize: the stack of D8 branes must connect smoothly at the bottom of the cigar, and

so connect smoothly out to D8 branes at infinity, making a U-shaped profile in the u, x4

plane. At large u, the UV, one sees a disconnectedD8 D8 pair with U(Nf )R×U(Nf )L which

is broken at small u, the IR, where one sees only the diagonal U(Nf ) symmetry remaining.

A variety of physical properties of meson and baryon physics has been extracted from

the model. These include the massive meson spectrum, the massless Goldstone pions [7],

certain decay rates [8], thermal behavior of hadrons [9, 10], as well as describing certain

condensation phenomena in the theory [11–17]. It is clear, however, that the SS model is

far from being the ultimate gravity dual of QCD. It suffers from several drawbacks like the

fact that its UV completion is not known, like discrepancies between its hadronic spectrum

and that observed in nature. Thus, one is instructed to further construct holographic

laboratories. The present paper follows these lines.

Here, we will instead take a near extremal D5 background with two of the world volume

coordinates compactified (x4, x5), and take the flavor branes to be probe D7 branes. We

take probe D7 branes will be parallel to some combination of u, x4, x5; some aspects of this

setup have been investigated in [18], and a close analog investigated in [19]. We expect

that the low energy dynamics to be once again 4D, and given the arguments of [1] (and

applied to the D5 background in [19]), should also be in the same universality class as pure

YM theory, excluding the flavor branes. Including the flavor branes adds chiral fermions to

the low energy weak coupling description, and so the holographic setup is dual to a theory

in the same universality class as pure large Nc QCD.

There are, however, some key differences between extremal D4 and D5 branes. Most

distinctly is the fact that the decoupling limit does not raise a large barrier, decoupling

the bulk modes. Rather, the radial effective potential becomes infinitely long, but of finite

hight. We find that this is true for the effective potential of the D7 brane fluctuations

as well. This gives that the effective potential has finitely many bound states, and so

unfortunately only a finite number of 4D mesons. We will, however, see the same type of

geometric understanding of chiral symmetry breaking as described above.

To begin, we will now briefly review the near horizon limit of the near extremal D5

background we wish to study. The metric is given by

ds2 =
u

R

(

ηµνdx
µdxν + dx2

4 + dx2
5f(u;uΛ)

)

+
R

u

du2

f(u;uΛ)
+RudΩ2

3 (1.1)

– 2 –



J
H
E
P
0
8
(
2
0
0
9
)
0
5
7

where dΩ2
3 is the metric of the unit 3 sphere, and

f(u;uΛ) =

(

1 − u2
Λ

u2

)

. (1.2)

Furthermore, there is a non trivial dilaton and 3 form flux

expφ = gs
u

R
, F3 =

2R2

gs
Ω3 (1.3)

where Ω3 is the volume form of the unit 3 sphere. The parameter R is related to string

parameters in the usual way R2 = gsNcα
′. We will be considering the case where both x4

and x5 are compact

x4 = x4 + 2πRx4
, x5 = x5 + 2πRx5

. (1.4)

The parameter Rx5
is in fact not independent of the other scales already mentioned, given

that we want the solution to be smooth around u = uΛ. One can see this most easily by

changing to variables

u2 = u2
Λ + z2. (1.5)

In these variables, the metric reads

ds2 =

√

u2
Λ + z2

R

(

ηµνdx
µdxν + dx2

4

)

+R
√

u2
Λ + z2dΩ2

3 +
R
(

dz2 + z2 dx2
5

R2

)

√

u2
Λ + z2

(1.6)

and clearly, for the metric to be non singular around z = 0, we need to take

x5 = x5 + 2πR, i.e. Rx5
= R. (1.7)

Thus we see that unlike the SS here uΛ is a free parameter not related to R. In fact this

is the situation classically. Based on similar situations [20], it is plausible that quantum

mechanically the system will not be stable for any uΛ. However, for the case discussed in

section 3 this instability does ont occur. One should also note that the above background

is confining, as
√
gttgxx is finite.

For this background, we read off the relation between field theory and string theory

quantities

g2
6 = (2π)3gsα

′, g2
4 =

2πgsα
′

RRx4

Tst =
1

2πα′
√
gttgxx|u=uΛ

=
uΛ

2πα′R
. (1.8)

The fact that uΛ is a free parameter implies that so is the string tension. Further, we

should comment that this background is S-dual to the near extremal NS5 brane. Such NS5

brane constructions have been argued to be the holographic dual of little string theories

(LSTs) [21] (for a review, see [22]), however in the case at hand we are in the opposite

range of validity (gs ≪ 1). Further, because S duality works non trivially on the D7 brane

probes, our theory will not have a straightforward UV completion. The use of holographic

– 3 –
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Figure 1. The configuration of D7 branes in the near extremal D5 brane background, following

the above considerations.

techniques for the NS backgrounds, [23–25], should, however, be easily be adapted to our

scenario (and in some cases be identical).

We organize the remainder of the paper as follows. In section 2 we discuss the gen-

eral behavior for D7 embeddings in the confined phase, and briefly discuss the eigenvalue

problem to describe the masses of mesons in this general case. In section 3, we consider D7

embeddings into the extremal limit of the background, which is also sufficient to describe

D7 embeddings that do not come near to the end of the radial coordinate at u = uΛ. We

find that these embeddings obey a simple scaling behavior, which we describe generally

enough to be applicable outside of these particular models. We also consider fluctuations

of the embedding functions and the world volume gauge field to describe the spectrum

of mesons in this limit. In section 4, we describe an embedding that falls all the way to

u = uΛ, and again consider fluctuations of the embedding functions and world volume

gauge field. We also consider baryons in this scenario. Finally, in section 5 we consider

the deconfined case, and consider the pattern of chiral symmetry breaking as a function

of the boundary conditions. In section 6 we conclude, and suggest some future lines of

investigation.

2 D7 embeddings

In this section we will consider embeddings of D7 branes into the above background. Qual-

itatively, we will find embedding of the form shown in figure 1. This background is similar

to the paperclip or hairpin background (see for instance [26] and [27]). The embeddings we

consider are transverse to some combination of the u, x4, x5 directions, and so the Chern

Simons (CS) term will be unimportant in determining the solutions of the equations of

motion, and we are left with the Dirac-Born-Infeld (DBI) action

SD7 = −κ7

∫

d8ξ exp(−φ)

√

(

− det

(

gMN
∂XM

∂ξi

∂XN

∂ξj

))

(2.1)

– 4 –
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where we have used the notation ξi to represent world volume coordinates of the D7 brane,

and κ7 is the D7 tension. We use an Ansatz of the form

xi(ξ) = ξi, i = µ, i = sphere coordinate (2.2)

x5(ξ) = x5(ρ), x4(ξ) = x5(ρ), u(ξ) = u(ρ).

In the above notation, we have picked a “static gauge” for the xµ and sphere directions.

The final world volume coordinate, ρ, parameterizes a path in x4, x5, u space. One can

show directly that the full non linear equations of motion for the xµ and sphere directions

are satisfied for the above Ansatz. Using the reparameterization invariance in ρ, we make

one final choice

u(ρ) = ρ. (2.3)

We now reduce the action to 1 dimension (ρ) and find the relevant equations of motion.

In the following we will abbreviate ∂
∂ρ

= ∂. Using this notation, the action becomes

SD7 =
κ7V3V4

gs

∫

dρρ3

√

(∂x4)
2 + (∂x5)

2 f(ρ;uΛ) +
R2

ρ2f(ρ;uΛ)
. (2.4)

The equations of motion are quite simple, and follow from the Noether charges associated

with translation invariance in x4 and x5. These read

ρ3∂x4
√

(∂x4)
2 + (∂x5)

2 f(ρ;uΛ) + R2

ρ2f(ρ;uΛ)

= P4u
3
Λ (2.5)

ρ3f(ρ;uΛ)∂x5
√

(∂x4)
2 + (∂x5)

2 f(ρ;uΛ) + R2

ρ2f(ρ;uΛ)

= P5u
3
Λ. (2.6)

This is a completely integrable system: one may simply solve for ∂x4 and ∂x5 and then

integrate with respect to ρ. Doing so, we find

x4 =

∫

dρP4

√

√

√

√

√

√

√

(

R
uΛ

)2

(

ρ
uΛ

)2
f(ρ;uΛ)

(

(

ρ
uΛ

)6
− P 2

4 − P 2
5

f(ρ;uΛ)

) (2.7)

x5 =

∫

dρP5

√

√

√

√

√

√

√

(

R
uΛ

)2

(

ρ
uΛ

)2
f(ρ;uΛ)3

(

(

ρ
uΛ

)6
− P 2

4 − P 2
5

f(ρ;uΛ)

) . (2.8)

The above expressions represent only one branch of the solution: in the end one must match

an identical branch connecting at the minimum value of u0 = ρ0. One may check explicitly

that the field equations of motion arising from action (2.1) are met for the solution given

by (2.7), (2.8) and (2.3).

There is a similarity to the solution for x5 and the solution given in [9], except that

a different power of ρ appears with the (also different) function f . In fact, for the case

– 5 –
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P4 = 0, we find that the minimum value of u is in fact given by u0, with P5 =
u3
0

u3
Λ

√

f(u0;uΛ)

which is a very similar expression to that given in [9].

The new piece of information is given by P4, and this changes the situation in an

interesting way. First, we note that the “turn around point” for the embedding is given

where ∂x4 or ∂x5 blow up (i.e. u = ρ is not varying while both x4 and x5 vary allot). Note

that for both x4 and x5 this happens at the same place: either where f(ρ;uΛ) → 0 or where
(

(

ρ
uΛ

)6
− P 2

4 − P 2
5

f(ρ;uΛ)

)

→ 0. The question then becomes, which one goes to zero first?

To help address these questions, we first change to variables

ρ̂ =
ρ

uΛ
. (2.9)

Under this transformation we are considering where

f(ρ;uΛ) = f(ρ̂; 1) = 0
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂; 1)

)

= 0. (2.10)

We can now see which one goes to 0 first: it is clearly the second line (when P5 6= 0).

Imagine coming in from very large positive ρ̂ and decreasing this value. The first line goes

to zero only when ρ̂ = 1. However, in such a limit, the second line already has a zero. This

is because of the f in the denominator of the last term is going to zero (from the positive

side), and so at some point this will compensate for the value of ρ̂6 − P 2
4 , and have a zero

at a value of ρ̂ > 1.

The only special case is when P5 = 0. When this is the case, one of the functions goes

to zero at max

(

P
1
3

4 , 1

)

. Note that this has the peculiar feature that the endpoints of the

D7 brane (a function of P4) may not be at the same point, but none the less, the brane

falls all the way to the bottom of the cigar u = uΛ. This ceases once |P4| > 1. If |P4| > 1,

then the embedding isn’t antipodal any more in x5. In the x5, u plane, the embedding

never reaches the bottom point, and so then never needs to be matched to a solution going

through the origin (we will see this more clearly we plot the asymptotic separation distance

as a function of P4 and P5).

One can check the above discussion of u0 = ρ0 = ρ̂0uΛ simply by plotting the results.

We define ρ̂0 by the equation

(

ρ̂6
0 − P 2

4 − P 2
5

f(ρ̂0; 1)

)

= 0. (2.11)

Clearly, ρ̂0 is a function ρ̂0(P4, P5) and so we may plot this (we plot the largest real root),

and compare it with the value 1 in figure 2. Further, we can see the special case of P5 = 0

arising, and the flattening of the function that happens along the line interval |P4| < 1:

indeed max

(

P
1
3

4 , 1

)

is the limiting value of the solution along the line P5 = 0. Further, for

large values of P4 and P5, the value of the zero ρ̂0 grows as well, and so the f in the last part

of the expression can be approximated by 1. This gives that the approximate value of the

– 6 –
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Figure 2. A plot of the largest real root, ρ̂0(P4, P5) = u0(P4, P5). Note all values are larger than

1. The wire frame in the right hand plot corresponds to the large Pi asymptote ρ̂0(P4, P5) →
(P 2

4 + P 2
5 )

1

6 .

Figure 3. The left hand graph is a side view of the plot of the root of the above rational function,

plotted as a function of P4, P5. The black wire frame plot is the asymptote ρ̂0 = (P 2
4 +P 2

5 )
1

6 = P
1

3

4

when P5 = 0. The right hand graph is a plot of ρ̂0(P4, P5) zoomed in on the region P5 = 0, |P4| < 1.

One may see that this surface is smooth on the line interval P5 = 0, |P4| < 1 except the endpoints

P5 = 0, P4 = ±1.

zero is given by ρ̂0 = (P 2
4 +P 2

5 )
1
6 . We plot this limiting value and show that it does indeed

asymptote (see figure 2). Finally, one can show that this surface exactly corresponds to

the curve max(P
1
3

4 , 1) along the line P5 = 0 by plotting a side view (see figure 3).

One may be curious how ρ̂0 → 1 as P5 → 0 on the line interval |P4| < 1. Clearly, it

must relax as P 2
5 , and so must be smooth around P5 = 0. We plot a zoomed in version of

– 7 –
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the plot of ρ̂0 and find that this is indeed the case. The only singular points on the surface

(with conical singularities) are at (P5, P4) = (0,±1). See figure 3.

Now that we have found (qualitatively) the minimum value to which the brane falls,

we also wish to relate the parameters P4 and P5 to brane separation at u = ∞ (in the coor-

dinates x4 and x5). We will call the asymptotic separation in ∆x4 = L4 and ∆x5 = L5. In

the end it will be these separations that we wish to consider the “boundary conditions” im-

posed on the branes, so that the fluctuations around these embeddings will satisfy Dirichlet

boundary conditions. Given the above expressions, we see that

L4 = 2R

∫ ∞

ρ̂0

dρ̂P4

√

√

√

√

1

ρ̂2f(ρ̂; 1)
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂;1)

) (2.12)

L5 = 2R

∫ ∞

ρ̂0

dρ̂P5

√

√

√

√

1

ρ̂2f(ρ̂; 1)3
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂;1)

) . (2.13)

where the factor of 2 comes from “gluing” the second branch of the solution on. Again,

finding analytic solutions to the above is problematic, but we can graph the results as a

function of P4 and P5, see figure 4.

We first consider the graph of L5/R. Before making this graph, one may think that

we need to be careful about finding the actual separation distance L5: one could have

a solution that connects through smoothly the point u = uΛ, and so the second branch

actually lies displaced by πRx5
= πR. However, the integral for L5/R appears to have

this built in. The only cases where the turn around point of the branes lies at u0 = uΛ

is on the interval −1 < P4 < 1 and P5 = 0, and so we focus on this region. While we do

not offer an analytic proof, we may zoom in on this part of the graph, and be convinced

that L5/R → ±π (see figure 5). One may also be convinced simply by noting that if

P4 = P5 = 0, then the second branch must be glued on in antipodally after reaching

u = uΛ to avoid a discontinuity in the tangent vector in u, x5, x5 space. If this is the case,

we see that the integrand in the expression for L5 must collapse to a delta function with

coefficient ±π in the limit that P5 → ±0. For generic values of ρ̂ the limit P5 → 0 sets the

integrand to zero, however at ρ̂ = ρ̂0 it blows up to infinity with the integral underneath

remaining constant. This is sufficient to show that the integrand goes to a delta function

in ρ̂ for the limit P5 → 0. This also explains why one misses this if one passes the limit

P5 = 0 under the integration: the limit implied by the integral and the limit P5 → 0 do

not commute, and so one must put in the additional π of separation by hand. Further,

because the values ±π are identified, the surface is actually continuous.

Next we consider the graph for L4. In figure 4 there is a divergence in L4 around

P5 = 0 and P4 → ±1. This is easy to understand. If one looks at P5 = 0 and P4 = 1, the

integrand goes as 1
ρ̂−1 around ρ̂ = ρ̂0 = 1, and so the integral is log divergent. Because L4

blows up around P5 = 0, P4 = ±1 we may wish to exclude multiple wrappings of the D7

around x4. We further restrict the total x4 winding to be π/Rx4
(half the circumference),

knowing that there is another solution where the same boundary conditions are satisfied,

– 8 –
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Figure 4. Plots of L4(P4, P5)/R and L5(P4, P5)/R (labeled simply L4 and L5 in the graphs). The

view on the left gives the same perspective as earlier graphs, while the view on the right is slightly

easier to see what is happening near the surface L4(P4, P5)/R = 0 and L5(P4, P5)/R = 0.

and less distance has been traversed by the brane. Hence, one may wish to exclude a small

region around P5 = 0 and P4 = ±1 whose boundary is given by |L4|/R = πRx4
/R.

The above considerations are what lead to the diagram in figure 1.

2.1 Mesons in the model

The mesons of this model are described by strings ending on the D7 branes[28]. The high

spin mesons are given by semiclassical strings which end on the D7 at the minimal value

of the brane embedding u0, fall towards the minimum value of uΛ and lay flat at this value

and finally climb back up to meet the D7 again at u0. The low spin (vector) mesons are

given by fluctuations of the D7 U(N) gauge field strength, and the scalar mesons are given

by the fluctuations of the embedding functions.

– 9 –
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Figure 5. Plots of L5(P4, P5)/R zoomed in around the interval. Note that in the side view the

maximum and minimum appears to approach ±π.

To compute any of these fluctuations, we will need the pullback metric

ds2p =
ρ

R

(

ηµνdx
µdxν +

(

∂x2
4 + ∂x2

5f(ρ;uΛ) +
R2

ρ2

1

f(ρ;uΛ)

)

dρ2 +R2dΩ2
3

)

=
uΛ

R
ρ̂

(

ηµνdx
µdxν + γ(ρ̂)

R2

ρ̂2
dρ̂2 +R2dΩ2

3

)

. (2.14)

where we have defined the useful function

γ(ρ̂) ≡ ρ̂6

f(ρ̂; 1)
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂;1)

) . (2.15)

For later use, we will also need

exp(−φ)
√

− det
(

g(p)ab

)

=
u3

ΛR

gs
ρ̂2
√

γ(ρ̂) (2.16)

and we find it convenient to use the notation

∂

∂ρ
= ∂,

∂

∂ρ̂
= ∂̂ = uΛ∂,

∂

∂xµ
= ∂µ. (2.17)

With such an assignment, the solutions above read as

∂̂x4 = RP4
1

√

ρ̂2f(ρ̂; 1)
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂;1)

)

=
RP4

ρ̂4

√

γ(ρ̂) (2.18)

∂̂x5 = RP5
1

√

ρ̂2f(ρ̂; 1)3
(

ρ̂6 − P 2
4 − P 2

5

f(ρ̂;1)

)

=
RP5

ρ̂4f(ρ̂; 1)

√

γ(ρ̂). (2.19)
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2.1.1 Vector mesons

First, we compute the effective action for the fluctuations associated with the gauge field

Fab which we take to be only a function of ρ̂, xµ and further that components of F with

indices along the sphere directions are zero. With this, we take the DBI and expand it to

second order in F,2

SD7 = −κ7

∫

d8ξ exp(−φ)
√

− det
(

g(p)ab + Fab

)

= −κ7

∫

d8ξ exp(−φ)
√

− det
(

g(p)ab

)

×
√

(

1 + ga1b1
p Fa1b1 +

1

2
Fa1b1Fa2b2

(

ga1b1
p ga2b2 − ga1b2

p ga2b1
p

)

+ · · ·
)

(2.20)

and now because F is antisymmetric, while g is symmetric, we find that to leading order

= −κ7

∫

dΩ3

∫

dxµdρ̂
u3

ΛR

gs
ρ̂2
√

γ(ρ̂)

(

1 +
1

4
Fa1b1Fa2b2g

a1a2
p gb1b2

p + · · ·
)

. (2.21)

Hence, the quadratic action we wish to consider is

SF 2 = −κ7Ω3

4gs

∫

dx4dρ̂u3
ΛRρ̂

2
√

γ(ρ̂)

(

R2

ρ̂2u2
Λ

Fµ1µ2
Fµ1µ2 +

2

u2
Λγ(ρ̂)

Fµ1ρ̂F
µ1

ρ̂

)

= −κ7Ω3

4gs

∫

dx4dρ̂uΛR
3

(

√

γ(ρ̂)Fµ1µ2
Fµ1µ2 +

2ρ̂2

R2
√

γ(ρ̂)
Fµ1 ρ̂F

µ1
ρ̂

)

(2.22)

and in the above we have used ηµν to raise and lower indices.

The equations of motion following from the above action are

√
γ∂νF

νµ + ∂̂
√
γF ρ̂µ = 0 ↔ √

γ∂νFνµ + ∂̂

(

ρ̂2

R2√γFρ̂µ

)

= 0 (2.23)

∂µF
µρ̂ = 0 ↔ ∂µFµρ̂ = 0. (2.24)

We expand the gauge field in the following way

Aµ =
∑

n

B(n)
µ (xν)ψn(ρ̂), Aρ̂ =

∑

n

π(n)(x
µ)φn(ρ̂). (2.25)

We further gauge fix ∂µB
(n)
µ = 0. Under these conditions, and for the above gauge choice,

we see that the equation (2.24) becomes
∑

n

m2
nπnφn(ρ̂) −

∑

n

∂µB
µ∂̂ψn =

∑

n

m2
nφn(ρ̂) = 0 (2.26)

where mn is defined by ∂µ∂
µBν = m2

nBν . We see that φn = 0 by this equation of motion

except for the case where mn = 0. We choose to index such a mode m0 = 0. π0 is the

massless pion.

2We need not worry about the CS term because the pullback of A6 (generated by the D5 background)

onto the D7 worldvolume is zero. Note also that we are taking F to be a U(1) gauge field. One may

generalize this discussion to a U(N) field by promoting F to a matrix, and taking a trace.
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We now note that the remaining equation of motion (2.23) reads

∑

n

[

γ
1
2 ∂µ∂

µBν
(n)ψn + ∂̂

(

ρ̂2

R2γ
1

2

∂̂ψn

)

Bν
(n)

]

− ∂̂

(

ρ̂2

R2γ
1

2

∂νπ0φ0

)

= 0. (2.27)

One can show that there are no massless normalizable modes of the vectors Bν , and so we

find that

∂̂

(

ρ̂2

R2γ
1
2

∂νπ0φ0

)

= 0 → φ0 ∝ γ
1
2

ρ̂2
. (2.28)

Thus, we find that the eigenvalue problem for the ψn reduces to

1

γ
1
2

∂̂

(

ρ̂2

γ
1
2

∂̂ψn

)

= −M2
A,nψn (2.29)

where the 4D mass is given by mA,n =
MA,n

R
.

Unfortunately, the eigenvalue problem for the fluctuations of the embedding coordi-

nates are much more involved because we do not have a good set of orthogonal coordinates

to the brane. However, we will study these in two special cases below.

3 Large u0 ≫ uΛ limit

In this section, we consider the limit where u0 ≫ uΛ. This limit is the same as the

extremal limit of the background because f(u;uΛ) can be approximated by f(u;uΛ) = 1.

As mentioned in the introduction this case makes sense also quantum mechanically. In fact

it is similar to the cases studied in [29]. In such a limit the periodic identification of x4 and

x5 now both become arbitrary, and further there is an additional SO(2) symmetry rotating

the x4, x5 plane, which the solutions will transform under in a simple way. To consider

the limit u0 ≫ uΛ, we cannot take a strict uΛ → 0 limit of equations (2.5) and (2.6)

because this would scale the right hand side of these equations to zero (when they should

be constants). Therefore, we absorb the u3
Λ into Pi, via pi ≡ u3

ΛPi (the parameters pi have

units). One may think of this as a scaling where uΛ → 0 while Pi → ∞ with pi = u3
ΛPi

remaining fixed. This is the connected to the fact that for large Pi the solution is in a

regime where u0 ≫ uΛ.

We consider equations (2.5) and (2.6) with the above substitutions and set uΛ = 0

and find

ρ3∂x4
√

(∂x4)
2 + (∂x5)

2 + R2

ρ2

= p4 (3.1)

ρ3∂x5
√

(∂x4)
2 + (∂x5)

2 + R2

ρ2

= p5. (3.2)
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As before, we solve for ∂x4 and ∂x5, and find

x4 =

∫

dρRp4

√

1

ρ2
(

ρ6 − p2
4 − p2

5

) =
1

3

Rp4 arcsin

(√
p2
4+p2

5

ρ3

)

√

p2
4 + p2

5

+ x4,0 (3.3)

x5 =

∫

dρRp5

√

1

ρ2
(

ρ6 − p2
4 − p2

5

) =
1

3

Rp5 arcsin

(√
p2
4+p2

5

ρ3

)

√

p2
4 + p2

5

+ x5,0. (3.4)

where the constants x4,0 and x5,0 can be fixed to 0 by translation invariance in x4 and x5

(again, the above only represents 1 branch of the solution and must be glued on to another

branch). This gives simple expressions for L4 and L5

L4 =
Rp4π

3
√

p2
4 + p2

5

L5 =
Rp5π

3
√

p2
4 + p2

5

. (3.5)

Further, we should note that this gives that

L2
4 + L2

5 =
R2π2

9
. (3.6)

In the x4, x5 plane, the ends of the D7 brane have a fixed asymptotic separation (not in-

cluding the warp factor); similar behavior was found in [19] for D5 brane embeddings. This

gives that L4 and L5 do not parameterize the 2 dimensional class of solutions that we have.

We can, however, use ρ0 = u0 =
(

p2
4 + p2

5

) 1
6 and the unit vector defining the separation

direction L4/L5 = p4/p5 as the two physical quantities. Note that one can take fixed L4

and L5 while varying u0 simply by rescaling p4 and p5 by the same factor.

Before turning to a discussion of these embeddings, we note some general points about

how to find the scaling of u0 with various Li in the problem. We note that in the extremal

limit, the action becomes

SD7 =
κ7V3V4

gs

∫

dρu3

√

(∂x4)
2 + (∂x5)

2 +
R2∂u2

u2
(3.7)

where in the above we have not fixed u = ρ as a gauge choice. We note that there is a Lie

point symmetry (for more on Lie point symmetries, see [30]) of the equations of motion

following from the above action. Namely, if we take

u→ C × u (3.8)

the action scales as

SD7 → C3SD7. (3.9)

This is clearly a symmetry of the solution space of the equations of motion. The above

symmetry is therefore a local map from solutions to solutions, the definition of a Lie point

symmetry.
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One could further scale the embedding coordinates xµ(ξ) → Cnµxµ(ξ) (no summation)

if one wishes (this rescales the effective V4) and possibly promote the above symmetry to a

Noether symmetry, however, we will not do this here.3 Note that in such a scaling, we have

not rescaled x4 or x5. Therefore, when applying this symmetry to the space of solutions,

we know that u0 → C × u0 however, L4 and L5 do not scale at all (as they are related to

the asymptotic separation of x4 and x5). This further accounts for the same behavior for

the D5 embeddings found in [19].

One can use such arguments to get the correct behavior in a host of situations. Of

particular interest is the situation where the metric is of the form gij(u)dx
idxj + f(u) ×

(du2 + u2dΩ2
M ) where all metric components along the i, j directions are functions of u

only, and dΩ2
M is the metric of some compact space spanned by coordinates θi. We further

assume that the dilaton is a function only of u. The reduced one dimensional Lagrangian

with xi = ξi and θi = θi(r) will always be of the form G(u)
√

(

1 + u2dΩ2
M

)

where now

all of the ds in the metric dΩ2
M are to be read as derivatives with respect to u. In such a

situation, u→ C × u is a Lie point symmetry of the action if G(C × u) = G(u) × C∆, i.e.

G(u) = u∆. This covers most extremal brane type embeddings. Further, such behavior

is intuitive for “flat” type embeddings of the probe brane in supersymmetric situations.

For a supersymmetric situation, the probe brane does not “see” the background it is in,

and simply goes along a straight path (straight in the sense of the flat geometry with no

backreacted branes). Therefore, the angular separation is always a “north pole/south pole”

type (at least asymptotically), and will not depend on u0 at all. As an example, see the

discussion of [4] (equation (8)). Of course the angular separation may be changed by some

constant if there is a conical singularity at the origin of the transverse space (at u = 0),

as in the more recent calculation [31] (see the last paragraph of section 3), however there

should still be no dependence on u0.

We can explore such possibilities in general. Consider a situation where the metric is of

the form C1r
ndxidxjηij+C2r

mdr2+C3r
m+2dΩ2, and the dilaton is of the form exp(φ) ∝ rq.

If one reduces the the DBI action to a one dimensional action via xi = xi(r), θi = θi(r)

(with an appropriate number of static gauge coordinates), one will always have the Lie

point symmetry r → C × r, xi → C
m−n+2

2 xi, θi → θi. In such a situation, the asymptotic

separation in the xi is ∆xi ∝ u
m−n+2

2

0 , and the angular separation ∆θi = constant. For

example in the case of the extremal Sakai-Sugimoto model [7, 8] n = 3/2,m = −3/2 and

so ∆x4 ∝ u
− 1

2

0 R
3
2 , where we have used R to make the correct units. This answer is indeed

correct [16] (see equation (2.18) of this work).

Our situation is somewhat special, where both the sphere and the flat space component

have the same warp factor up to a constant. This is the reason that in our extremal case,

L4 and L5 do not depend at all on u0. It is a statement that a pure rescaling in u is a Lie

3This is because the particular form of this symmetry is dependent on the fact that at least 4 of the

fields xµ, x4, x5 are along the world volume of the D7 and aligning them to be the first 4 xµ via a Lorentz

transformation, and then further gauge fixing these to be ξµ. Thus, if we truly wanted to extend the above

symmetry to a Noether symmetry, we would need to include some combination of coordinate transformations

and Lorentz symmetry too, which we do not wish to consider here.
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point symmetry, without requiring extra rescalings of the functions xi. Further, in such sit-

uations, the boundary conditions are not affected by varying u0. Therefore, one may expect

such a mode to be normalizable, and correspond to a massless mode. One usually thinks of

such a mode as a Goldstone boson of some spontaneously broken symmetry. Here, the sym-

metry is the Lie point symmetry promoted to a full Noether symmetry, as discussed in the

footnote earlier. This is a full (non linear) symmetry of the DBI action. It would be inter-

esting to see what the symmetry of the DBI action corresponds to on the field theory side.

We now turn back to the embeddings at hand. Note that using the SO(2) symmetry

of the background (mixing x4 and x5), one may rotate and translate to a frame where

x4 = 0, and further, x5(u) ∈ (−Rπ
6 · · · Rπ

6 ). Such a frame change will mix any periodic

identifications one has made in x4 and x5 (by a slant identification “τ”), however, the

local physics of the embedding will not be dependent on such considerations. Therefore,

the point x5 = 0 corresponds to where the embedding has reached u0. Therefore, we may

summarize the embedding as

u(x5) =









p5

sin

(

3(x5+
Rπ
6 )

R

)









1

3

. (3.10)

This is suggestive of a change of variables. We make the change

y = u3 sin

(

3
(

x5 + Rπ
6

)

R

)

(3.11)

v = u3 cos

(

3
(

x5 + Rπ
6

)

R

)

. (3.12)

In these coordinates, the metric becomes

ds2 =

(

y2 + v2
)

1
6

R

(

ηµνdx
µdxν + dx2

4

)

+
R

9 (y2 + v2)
5
6

(

dy2 + dv2
)

+R
(

y2 + v2
)

1
6 dΩ2

3. (3.13)

We change to “7 brane frame” via

GIJ = exp

(

−φ2

8

)

gIJ . (3.14)

Changing frame in this way gives that
√

detGp =
√

det gp exp(−φ) where Gp is the pull-

back of the above G to the D7 world volume. In this frame

g
1
4
s

R
1
4

ds2G =

(

y2 + v2
) 1

8

R

(

ηµνdx
µdxν + dx2

4

)

+
R

9 (y2 + v2)
7
8

(

dy2 + dv2
)

+R
(

y2 + v2
)

1
8 dΩ2

3. (3.15)
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The embedding of the D7 is now given by y = p5 = u3
0, x4 = 0. This gives the pullback

metric to be

g
1
4
s

R
1
4

ds2G =

(

u6
0 + v2

) 1
8

R
(ηµνdx

µdxν) +
R

9
(

u6
0 + v2

)
7
8

(

dv2
)

+R
(

u6
0 + v2

)
1
8 dΩ2

3. (3.16)

One can now see why y = u3
0 is a good embedding for any u0: the determinant of the above

metric does not depend on the warp factors (u6
0 + v2)! We will see the solution associated

with shifting u0 in the linearized equations of motion, which we will study in the next

section. We now add a word of caution. The above symmetry scaling u0 to different values

is only a classical symmetry. This may not be true quantum mechanically, in analogy with

the expectations for uΛ expressed in section 1 [20].

3.1 Scalar mesons

We now turn to the fluctuations of the above embedding. To do so, we expand the fields

as y = u3
0 + w(v, xµ), x4 = 0 + x4(v, x

µ). Therefore, we find

g
1
4
s

R
1
4

ds2G =

(

(u3
0 + w)2 + v2

) 1
8

R
(dxµdxµ) +

R

9
(

(u3
0 + w)2 + v2

)
7
8

(

dv2
)

+R
(

(u3
0 + w)2 + v2

)
1

8 dΩ2
3 (3.17)

+
R

9
(

u6
0 + v2

)
7
8

(∂vwdv + ∂µwdx
µ)2 +

(

u6
0 + v2

) 1
8

R
(∂vx4dv + ∂µx4dx

µ)2 .

We wish to expand det(Gp) to second order in w and x4. With the above parametrization,

this is now easy, as we may think of the third line as a perturbation of a metric given by

the first line. Therefore, we define

g
1
4
s

R
1
4

ds20 =

(

(u3
0 + w)2 + v2

) 1
8

R
(dxµdxµ) +

R

9
(

(u3
0 + w)2 + v2

)
7
8

(

dv2
)

+R
(

(u3
0 + w)2 + v2

)
1

8 dΩ2
3 (3.18)

and use this to define a metric Gp. Now, to leading order, the expanded metric

det(Gp + h) = det(Gp)
(

1 +Ga1a2
p ha1a2

)

. (3.19)

In the second term of the above, we may substitute w = 0 into the metric gp as h is already

second order in w and x4. Further, det(gp) does not depend on w or x4, and so there is no

need to expand further. We therefore find that, to second order

∫

dΩ3

√

det(Gp) = Ω3
R

3gs

(

1 +
1

2
∂µx4∂

µx4 +
9(u6

0 + v2)

R2

1

2
(∂vx4)

2

+
R2

9(u6
0 + v2)

1

2
∂µw∂

µw +
1

2
(∂vw)2

)

. (3.20)
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The second order action we wish to consider is therefore

S = −κ7RΩ3

gs

∫

dvd4x

(

ζ−1

9

1

2
∂µw∂

µw +
1

2
(∂vw)2 +

1

2
∂µx4∂

µx4 + 9ζ
1

2
(∂vx4)

2

)

with

ζ ≡ u6
0 + v2

R2
. (3.21)

The above action has positive definite Hamiltonian, so we expect the embedding to be

stable.

The eigenvalue problem we wish to satisfy is the following

∂V

(

9(1 + V 2)∂V ψx,Mx

)

= −M2
xψx,Mx(V ) (3.22)

9(1 + V 2)∂2
V ψw,Mw(V ) = −M2

wψw,Mw(V ). (3.23)

where the 4D masses are given by mi = Mi
R

and we have defined V = v
u3
0

. These have the

general solutions

ψx,Mx(V ) = C1,xP

(

√

9 − 4M2
x

6
− 1

2
;−iV

)

+

+C2,xQ

(

√

9 − 4M2
x

6
− 1

2
;−iV

)

(3.24)

ψw,Mw(V ) = C1,w(1 + V 2) 2F1

(

3

4
+

√

9 − 4M2
w

12
,
3

4
−
√

9 − 4M2
w

12
;
1

2
;−V 2

)

(3.25)

+C2,wV (1 + V 2) 2F1

(

5

4
+

√

9 − 4M2
w

12
,
5

4
−
√

9 − 4M2
w

12
;
3

2
;−V 2

)

where P and Q are Legendre functions, and 2F1 is the hypergeometric function. There

are possible bound states in the regime

0 ≤ mx,w =
Mx,w

R
≤ 3

2

1

R
. (3.26)

Curiously, we will find this to be true in the next section as well, where we consider an

embedding into the near extremal background.

We now change the eigenvalue problem to Schödinger form to analyze the above dif-

ferential equations. We do so by changing coordinates and variables

V = sinh(K)

ψw,Mw(K) =
√

cosh(K)Ψw,Mw(K)

ψx,Mx(K) =
1

√

cosh(K)
Ψx,Mx(K). (3.27)

This brings the equations to the following form

∂2
KΨw,Mw(K) −

(

1

4
− 3

4

1

cosh(K)2

)

Ψw,Mw(K) = −1

9
M2

wΨw,Mw(K) (3.28)

∂2
KΨx,Mx(K) −

(

1

4
+

1

4

1

cosh(K)2

)

Ψx,Mx(K) = −1

9
M2

xΨx,Mx(K). (3.29)
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The second line clearly has no normalizable bound states, where as the first at least has

the possibility. In fact, the above set of differential equations is exactly the same as those

encountered in the next section, with a simple modification.

In the next section we show that there is only one bound state for the equation of the

first type above, and in fact this is the the Mw = 0 mode anticipated by the discussion

above. For Mw = 0, we find

Ψw,Mw=0(K) =
C1,w

√

cosh(K)
+
C2,w sinh(K)
√

cosh(K)
. (3.30)

The first is clearly normalizable, where the second is clearly non normalizable. Further,

taking the normalizable solution, we find that the profile in ψw,Mw=0 = C1,w, exactly

corresponding to shifts in the definition of u0. We will fully analyze the above type of

differential equations in the next section.

3.2 Vector mesons

We now analyze the fluctuations of the world volume vector gauge field. As in the previous

section, we find that

= −κ7

∫

dΩ3

∫

dxµdve−φ√gp

(

1 +
1

4
Fa1b1Fa2b2g

a1a2
p gb1b2

p + · · ·
)

. (3.31)

which for this case gives

S = −κ7Ω3

∫

dxµdv
R

gs



1 +
1

4

g
1
2
s R

3

2

(

u6
0 + v2

)
1
4

FµνF
µν +

1

2

9g
1
2
s

(

u6
0 + v2

) 3
4

R
1
2

FµvF
µ

v + · · ·





(3.32)

where we now use ηµν to raise and lower indices. The equations of motion read

R2∂µFµν +
(

u6
0 + v2

)
1
4 ∂v

(

(

u6
0 + v2

)
3
4 Fvν

)

= 0 (3.33)

∂µFµv = 0. (3.34)

As before we expand

Aµ =
∑

n

B(n)
µ (x)ψn(v), Av =

∑

n

πn(x)φn(v) (3.35)

and gauge fix ∂µBµ = 0 to find

∑

n

R2∂µ∂µB
(n)
ν ψn+

(

u6
0+v2

)
1
4 ∂v

(

(

u6
0 + v2

)
3
4 ∂vψn

)

B(n)
ν = 0 (3.36)

∂v

(

(

u6
0 + v2

)
3
4 ∂νπ0φ0

)

= 0 → φ0 ∝ 1
(

u6
0+v2

) 3
4

. (3.37)

and for n 6= 0, φn = 0.
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We may change the ψn equations to Schrödinger form via

v

u3
0

= sinh(K)

ψ(n)(K) =
1

(cosh(K))
1
4

Ψn (3.38)

and taking ∂µ∂µB
(n) = m2

nB
(n) ≡ M2

n
R2 B

(n) we find

∂2
KΨ(K) − 1

144
Ψ(K)

(

9 +
27

cosh(K)2

)

= −1

9
M2

nΨ(K). (3.39)

This obviously has no normalizable modes. This means that the only 4D meson from this

sector is the massless pion π0. We will see the same phenomena in the next section.

4 A simple antipodal embedding

In this section we will be concerned with the antipodal embedding P4 = 0, P5 = 0. This is

the rare exception when we have an analytic solution that comes into the region u ∼ uΛ.

We will find it convenient to start with the z coordinates introduced earlier

u2 = u2
Λ + z2. (4.1)

In these variables, the metric reads

ds2 =

√

u2
Λ + z2

R

(

ηµνdx
µdxν + dx2

4

)

+R
√

u2
Λ + z2dΩ2

3 +
R

√

u2
Λ + z2

(

dz2 + z2 dx
2
5

R2

)

(4.2)

and we make the following coordinate change

w ≡ z sin
(x5

R

)

(4.3)

v ≡ z cos
(x5

R

)

(4.4)

so that

ds2 =

√

u2
Λ + z2

R

(

ηµνdx
µdxν + dx2

4

)

+R
√

u2
Λ + z2dΩ2

3 +
R

√

u2
Λ + z2

(

dw2 + dv2
)

. (4.5)

Now, the solution to the embedding reads x4(v) = w(v) = 0 (we will use v as the world

volume coordinate).

4.1 Scalar mesons

We now expand the action to quadratic order in x4(v, x
µ), w(v, xµ). This is most easily

accomplished by going to a “seven brane” frame

GIJ = exp

(

−φ2

8

)

gIJ . (4.6)
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Changing frame in this way gives that
√

detGp =
√

det gp exp(−φ) where Gp is the pull-

back of the above G to the D7 world volume. We first expand the modified line element

to second order in fluctuating fields x4 and w, and we find

g
1
4
s ds

2
G = ζ

3
8 ηµνdx

µdxν +R2ζ
3
8dΩ2

3 + ζ−
5
8 dv2

+ζ
3
8 (∂vx4dv + ∂µx4dx

µ)2 + ζ−
5
8 (∂vwdv + ∂µwdx

µ)2

+
3

8
ζ−

5
8
w2

R2
ηµνdx

µdxν +R2 3

8
ζ−

5
8
w2

R2
dΩ2

3 −
5

8
ζ−

13
8
w2

R2
dv2 + · · · (4.7)

with

ζ ≡ u2
Λ + v2

R2
. (4.8)

Note that the ζ defined in this section is different than the ζ defined in the last section.

Next, we expand the action to second order and find

∫

d4xµdvdΩ3

√

−Gp = Ω3

∫

d4xµdvζ

[

1 +
1

2
∂µx4∂

µx4 +
1

2
ζ(∂vx4)

2

+
1

2
ζ−1∂µw∂

µw +
1

2
(∂vw)2 +

1

2

2

R2
w2

]

(4.9)

which has positive definite hamiltonian, and so we expect that this embedding is stable.

The proper eigenvalue problem is

ζ−1∂v

(

ζ2∂vψx,mx(v)
)

= −M
2
x

R2
ψx,mx(v)

∂v (ζ∂vψw,mw(v)) =

(

2

R2
− M2

w

R2

)

ψw,mw (4.10)

where the 4D masses are mx = Mx
R

and mw = Mw
R

. The solution to these are the following

ψx,Mx(V ) = Cx,1 2F1

(

3

4
−
√

9 − 4M2
x

4
,
3

4
+

√

9 − 4M2
x

4
;
1

2
;−V 2

)

+Cx,2V 2F1

(

5

4
−
√

9 − 4M2
x

4
,
5

4
+

√

9 − 4M2
x

4
;
3

2
;−V 2

)

(4.11)

ψw,Mw(V ) = Cw,1P

(

√

9 − 4M2
w

2
− 1

2
;−iV

)

+Cw,2Q

(

√

9 − 4M2
w

2
− 1

2
;−iV

)

(4.12)

where

V =
v

uΛ
(4.13)

and 2F1 is the hypergeometric series, and P and Q are Legendre functions. Note again

that the definition of the above V differs from the last section.
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There are possible bound states in the range

0 ≤ mx,w =
Mx,w

R
≤ 3

2

1

R
. (4.14)

If mx or mw exceed this range of values, the indices of the above functions become com-

plex. One can show that around V = ∞ these go as appropriately normalized plane wave

solutions, and so represent a continuum of states. This corresponds to a mass scale at

which the scalar mesons may no longer be considered 4 dimensional.

We expect that the indices of the hypergeometric equation being integers is special,

and we find that in the case Mx =
√

2 that

ψx,Mx=
√

2(V ) =
Cx,1 + Cx,2V

V 2 + 1
. (4.15)

In such a case we see that Cx,2 = 0 is a normalizable solution. We will now give an

argument that this is the only bound state of the above eigenvalue equations.

We will change the one dimensional problem in hand to Schrödinger form. To do so,

we take the change of variables and functions

V = sinh(K) (4.16)

ψw,Mw(K) =
Ψw,Mw(K)
√

cosh(K)
(4.17)

ψx,Mx(K) =
Ψx,Mx(K)

(cosh(K))
3
2

. (4.18)

Then, the equations above become

∂2

∂K2
Ψw,Mw(K) −

(

9

4
+

1

4

1

cosh(K)2

)

Ψw,Mw(K) = −M2
wΨw,Mw(K) (4.19)

∂2

∂K2
Ψx,Mx(K) −

(

9

4
− 3

4

1

cosh(K)2

)

Ψx,Mx(K) = −M2
xΨx,Mx(K). (4.20)

In the above problem, we are looking for bound states whose energy is interpreted as

E = M2
i . Clearly there are no bound states for the potential of the first kind (it is a hill,

rather than a well). In the second case, there is at least the possibility that there are bound

states. Using the WKB approximation, we take

n = −1

2
+

1

π

∫ cosh−1

 

3√
−12M2

x+27

!

− cosh−1

 

3√
−12M2

x+27

! dK

√

M2
x − 9

4
+

3

4

1

cosh(K)2
. (4.21)

There is a bound state when n is an integer. Clearly
√

3
2 < Mx <

√

9
4 by considering the

maximum and minimum of the potential, and so we plot the above function in this range in

figure 6. The plot of n crosses an integer value only at n = 0. This crossing is close to the

exact solution of Mx =
√

2, but not precise. We may expect this low level of accuracy for

the least energetic bound state, but generically, the accuracy of the WKB approximation
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Figure 6. Plot of n(Mx). Note that the only integer solution is n = 0, and that this approximates

the known solution of Mx =
√

2.

is improved for higher energy bound states. Therefore, we trust that there are no other

bound state solutions.

One further note is in order. For the above configuration, there is no scaling symmetry

of the DBI action (as there was in the last section). Therefore, it seems plausible that the

above mode is a pseudo goldstone mode associated with the scaling symmetry. Because

the symmetry is not exact (due to the function f), the mass is lifted from 0. It would be

interesting to find a way to track the mode from small to large values of u0/uΛ and see

if this is indeed the case. This would further track from being a pure w excitation (when

u0 ≫ uΛ, as in the last section) to being a pure x4 excitation (for u0 = uΛ, in this section).

Finding the correct linear combination that was a bound 4D state, and diagonalized the

mass matrix in the general case would be instructive.

4.2 Vector mesons

As in the previous section, we find that

= −κ7

∫

dΩ3

∫

dxµdve−φ√gp

(

1 +
1

4
Fa1b1Fa2b2g

a1a2
p gb1b2

p + · · ·
)

. (4.22)

which for this case gives

SF 2 = −κ7Ω3

∫

dxµdv

√

u2
Λ + v2

R2

2
R3

4gs





√

u2
Λ + v2

R2

−2

FµνF
µν + 2FµvF

µ
v





= −κ7Ω3R
3

gs

∫

dxµdv
1

4



FµνF
µν + 2

√

u2
Λ + v2

R2

2

FµvF
µ

v



 . (4.23)

The equations of motion read

∂µF
µν + ∂vF

vν = 0 ↔ ∂µFµν + ∂v

(

u2
Λ + v2

R2
Fvν

)

= 0 (4.24)

∂µF
µv = 0 ↔ ∂µFµv = 0. (4.25)
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As before we expand

Aµ =
∑

n

B(n)
µ (x)ψn(v), Av =

∑

n

πn(x)φn(v) (4.26)

and gauge fix ∂µBµ = 0 to find

∑

n

∂µ∂µB
(n)
ν ψn + ∂v

(

u2
Λ + v2

R2
∂vψn

)

B(n)
ν = 0 (4.27)

∂v

(

u2
Λ + v2

R2
∂νπ0φ0

)

= 0 → φ0 ∝ 1

1 + v2

u2
Λ

. (4.28)

In this case, the eigenvalue problem is

∂V

(

(1 + V 2)∂V ψn(V )
)

= −M2
A,nψn(V ). (4.29)

where again V = v
uΛ

.

We change to Schrödinger form via

V = sinh(K) (4.30)

ψn(K) =
1

√

cosh(K)
Ψn(K) (4.31)

and find
(

∂2
K − 1

4

(

1 +
1

cosh(K)2

))

Ψn(K) = −M2
A,nΨn(K) (4.32)

which obviously has no normalizable states. Note that the eigenvalue problem is actually

the same as the Mw problem above (with a shift in the potential). Hence, the only 4D

meson from this sector is again the massless pion π0.

4.3 Baryons

We now turn to the question of determining the size of the baryon, and for concreteness,

we will model this by an instanton in the U(N) gauge field living on the brane. The size

of the baryon will be stabilized by the presence of the CS term as in the SS model [7, 32].

We will only use the above quadratic action plus the CS term arising from the term

SCS = ∓κ7

∫

Tr (exp (F )) ∧ C2 (4.33)

where C2 is the potential leading to F3 of the background, and further F = dA − i[A,A]

is the U(Nf )field strength. The appropriate term is the F 3 term. We rescale F by the

canonical factor of 2πα′, and integrate by parts to find that

SCS = ∓κ7
1

3!
(2πα′)3

∫

ω5(A) ∧ F3 = ∓Nc

24

∫

ω5(A) (4.34)

where

ω5(A) = Tr

(

AF2 − i

2
A3F − 1

10
A5

)

(4.35)
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and the integration is now five dimensional. This is exactly the term found in [32]. We

now turn to the quadratic action

SF 2 = −κ7Ω3R
3

gs

∫

dxµdv
1

2
Tr



FµνF
µν + 2

√

u2
Λ + v2

R2

2

FµvF
µ

v



 (4.36)

and perform the coordinate transformation xµ = Rx̂µ, v = uΛV , and further scale F by

2πα′ to find

SF 2 = −κ7Ω3R
3uΛ(2πα′)2

gs

∫

dx̂µdV
1

2
Tr
(

FµνF
µν + 2

(

1 + V 2
)

FµV F
µ

V

)

= − uΛ

2(2π)3
√
α′

(gsNc)
3
2

gs

∫

dx̂µdV
1

2
Tr
(

FµνF
µν + 2

(

1 + V 2
)

FµV F
µ

V

)

(4.37)

where µ, ν indices are still raised and lowered by ηµν . We will drop the ˆ in the following,

knowing that V is measured in uΛ units and xµ is measured in R units. Note that in the

limit that V → 0 that the above action goes to that of the free 5D Yang-Mills (YM) theory,

as it does in [32]. We therefore write down the combined action

S = SF 2 + SCS. (4.38)

Next, we wish to consider the mass of the baryon to leading order in a “small size”

expansion. We will do this for the SU(2) BPST instanton by checking the energy as a

function of the instanton size. The BPST instanton configuration is

Fij =
2ρ2

(ξ2 + ρ2)2
ǫijaτ

a, FiV =
2ρ2

(ξ2 + ρ2)2
τi, ξ =

√

(~x− ~x0)2 + (V − V0)2. (4.39)

The constants (~x0, V0) parameterize the location and ρ parameterizes the size. Above, τ i

are the Pauli matrices that satisfy Tr(τaτ b) = 2δab. We plug this into the Lagrangian

density, and integrate to give the energy of this configuration (measured in units of R, as

we must “unscale” time to get something with units)

E(ρ, V0)R =
uΛ

2(2π)3
√
α′

(gsNc)
3
2

gs

∫

d3x̂dV
1

2
Tr
(

FijF
ij + 2

(

1 + V 2
)

FiV F
i
V

)

=
uΛ

2(2π)3
√
α′

(gsNc)
3
2

gs

∫

dV
3ρ4π2

(

2 + V 2
)

((V − V0)2 + ρ2)
5
2

=
uΛ

2(2π)3
√
α′

(gsNc)
3
2

gs
(4π2V 2

0 + 2π2ρ2 + 8π2) (4.40)

which is only minimized at V0 = 0 and ρ = 0.

Note that the above energy is the mass of the baryon in this model, which, plugging

in R =
√
Ncα′gs above gives

E(0, 0) = Mb =
NcuΛ

2πα′ . (4.41)

– 24 –



J
H
E
P
0
8
(
2
0
0
9
)
0
5
7

This is exactly reproduced by the energy of a D3 wrapping the S3 (sitting at u = uΛ) in

the geometry,

κ3

∫

e−φ det(gp) = (2π)−3(α′)2
∫

dx0dΩ3
R

uΛgs

√

R2u4
Λ

= (2π)−3(α′)−24π2R
2

gs
uΛ

∫

dx0 =
NcuΛ

2πα′

∫

dx0. (4.42)

Before we address the effect of the CS term on the size of the baryon, we first wish to

identify a perturbative paremeter that will make the F 2 term parametrically larger than

the CS term. To do so, we note that the coefficient of the F 2 term as

SF 2 =
(u2

ΛR
2)

1
2

α′
24

2(2π)3
Nc

24

∫

dx̂µdV
1

2
Tr
(

FµνF
µν + 2

(

1 + V 2
)

FµV F
µ

V

)

and so the relative coefficient is
(u2

Λ
R2)

1
2

α′

24
2(2π)3

≡ λ̂. We use this as the large parameter that

we will be expanding in. We expect corrections in the size of the instanton to be of order

λ−
1
2 . With this in mind we scale the spatial dimensions by

x̂i = λ̂−
1
2 x̃i i ∈ {1 · · · 3}, V = λ̂−

1
2 Ṽ . (4.43)

The discussion now exactly mirrors that of the discussion in [32], with the replacement in

their formulas of a = 1/24. Further, the parameter Z in their equations must match the

appearance of V0 in our calculation above. Therefore, we simply use their result with the

appropriate changes

Mb =
NcuΛ

2πα′

(

1 + λ̂−1

(

Ṽ 2
0

2
+
ρ̃2

4
+

1

320π4a2

1

ρ̃2

)

+ O
(

λ̂−2
)

)

(4.44)

where above we have emphasized the scaling with λ̂ by including the tilde, i.e. Ṽ0 = λ̂
1
2 ×V0,

and as we have mentioned before, a = 1
24 . This gives that

ρ̃2 =
6√
5π

→ ρ2 =
6√
5π

1

λ̂
(4.45)

To restore units, we note that one must include a factor of R in the above to get the order

of the radius in the xi directions. This gives a final result of

ρ2
x =

6√
5π

1

λ̂
R2 =

4√
5
π2 R

uΛ
α′. (4.46)

Physical length in this background near the point u = uΛ is measured in dx2/(R/uΛ) units.

Therefore, the physical size of the above distribution is 2π
51/4 ∼ 4.2 in string units. This is

not very big, and so string corrections may be needed.
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u

u

x4
x5

 
 

 

D7 
u0

R x 5

L

R x 4

4

T

L5

Figure 7. The configuration of D7 branes in the near extremal D5 brane background with the

thermal factor on the time component of the metric. The dashed lines show a possible configuration

with the branes falling into the horizon.

5 Deconfined phase

One may also wish to study the physics of the phase where the blackening factor f appears

on the timelike component of the metric. For such a background, we have

ds2 =
u

R

(

−f(u;uT )dt2 + δijdx
idxj + dx2

4 + dx2
5

)

+
R

u

du2

f(u;uT )
+RudΩ2

3 (5.1)

and

expφ = gs
u

R
, F3 =

2R2

gs
Ω3. (5.2)

In this case uT implies a horizon, however,classically the temperature does not depend on

this parameter at all (as the periodicity of x5 in the last section). Here

δt = 2πR =
1

T
, (5.3)

and further, we can take uT to be a measure of the energy density via

E(uT ) = u2
T

V5

(2π)5(α′)4g2
s

, S = 2πRE(uT ). (5.4)

Above we have used the energy as measured for a near extremal D5 in flat R
1,9, and S is

obtained via the Bekenstein-Hawking formula.

As in the last section, one can take the embedding of a D7 which is transverse to some

combination of u, x4x5. Possible configurations are shown graphically in figure 7.

Again, choosing u to be the world volume coordinate of the brane ρ, we find the

reduced action

T8

gs
V4V3

∫

dρρ3

√

f(ρ;uT ) ((∂x4)2 + (∂x5)2) +
R2

ρ2
. (5.5)

As before, we find the conserved quantities

ρ3f(ρ;uT )∂x4
√

f(ρ;uT ) ((∂x4)2 + (∂x5)2) + R2

ρ2

= P4u
3
T (5.6)

ρ3f(ρ;uT )∂x5
√

f(ρ;uT ) ((∂x4)2 + (∂x5)2) + R2

ρ2

= P5u
3
T (5.7)
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which allows us to solve for ∂x4, ∂x5 as

∂̂x4 = R
P4

√

ρ̂2f(ρ̂; 1)
(

ρ̂6f(ρ̂; 1) − (P 2
4 + P 2

5 )
)

(5.8)

∂̂x5 = R
P5

√

ρ̂2f(ρ̂; 1)
(

ρ̂6f(ρ̂; 1) − (P 2
4 + P 2

5 )
)

. (5.9)

where in this section we define

ρ̂ =
ρ

uT
, ∂̂ =

∂

∂ρ̂
(5.10)

This allows us to immediately identify

P 2
4 + P 2

5 ≡ P 2 ≡ ρ̂6
0

(

1 − 1

ρ̂2
0

)

(5.11)

where ρ̂0 is the minimal value to which the brane falls (ρ̂0 = ρ0/uT = u0/uT ). We note

that the action is a function only of ρ̂0. The above configurations always give a connected

brane antibrane for P 2 > 1.

Further, we should note that because the functions Li(ρ̂0)
R

only depend on ρ̂0, that for

fixed boundary condition at infinity, varying uΛ does not affect ρ̂0. This is because to

maintain the boundary conditions at infinity, one must vary u0 in just such a way as to

keep u0/uT = ρ̂0 fixed.

One may now ask whether the connected configuration (considered above) is preferred

or whether the configuration where the brane anti-brane pair simply fall into the horizon is

preferred. To measure this, we subtract the two (infinite) actions, considering the boundary

conditions as being placed at some finite (but large) value of u, and then relaxing this

position to infinity. This defines our regularization procedure.

The resulting difference we wish to consider is therefore

∆S

2V3V4T7Ru3
T

=

∫ ∞

ρ̂0

dρ̂ρ̂5

√

f(ρ̂; 1)

ρ̂6f(ρ̂; 1) − ρ̂6
0f(ρ̂0; 1)

−
∫ ∞

1
dρ̂ρ̂2

=

∫ ∞

ρ̂0

dρ̂

(

ρ̂5

√

f(ρ̂; 1)

ρ̂6f(ρ̂; 1) − ρ̂6
0f(ρ̂0; 1)

− ρ̂2

)

− 1

3
(ρ̂3

0 − 1). (5.12)

We cannot evaluate this exactly, however, we may plot it numerically. The plot shows that

for u0

uT
< ρ̂c

0 ≈ 2.4456 that the separated D7 D7 is preferred, and that for u0

uT
> ρ̂c

0 ≈ 2.4456

that the connected “U-shaped” configuration is preferred. Because the temperature is not

a function of uT , we may not associate this with a phase transition, even in the space of

energy density, of which uT is a measure. To stress this point, we may easily plug this into

the equations for L4 and L5 and find

L(ρ̂c
0) ≡

√

L4(ρ̂
c
0)

2 + L5(ρ̂
c
0)

2 = 1.068R. (5.13)

We note that in the above R does not vary as we vary uT , and neither does L (as this

is a boundary condition we are imposing). We find therefore that the chiral symmetry

– 27 –



J
H
E
P
0
8
(
2
0
0
9
)
0
5
7

u
0

u
T

2 3 4

1
2

 
DS

V
3
 V

4
 T

7
 R uT

3

K0.25

K0.20

K0.15

K0.10

K0.05

0.00

0.05

Figure 8. The difference in actions between the “U-shaped” and “||-shaped” configurations plotted

as a function of ρ̂0 = u0

uT
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Figure 9.
L

“

ρ̂0=
u0

uT

”

R
along with the critical value

L(ρ̂c

0
≈2.4456)
R

≈ 1.068, and the asymptotic value of
L(ρ̂0=∞)

R
= π

3 ≈ 1.047, plotted as red green and yellow respectively. Although we have not plotted

it, the remainder of the graph for L(ρ̂0)
R

goes to zero as ρ̂0 → 1.

breaking/restoration is purely a function of the boundary conditions imposed, and find that

for π
3R < L / 1.068R that chiral symmetry is present in the deconfining phase, and that

for L ' 1.068R chiral symmetry is broken in the deconfining phase. However, we note that

if L < π
3R that chiral symmetry is again broken (unless there is some problem with an open

string tachyon, to which our analysis is insensative). We plot the curve of L(ρ̂0)
R

along with

the critical value
L(ρ̂c

0)
R

≈ 1.068, and the asymptotic value of L(ρ̂0=∞)
R

= π
3 ≈ 1.047 in figure 9

to make this more clear. One can therefore see that outside the window π
3R < L / 1.068R,

chiral symmetry is broken. When L is above this window, the brane dips far enough

towards the horizon that the separated brane configuration is preferred. However, this also

occurs below π
3R: if the asymptotic separation is below this value, there does exist a value

of ρ̂0 which allows for a connected configuration, however in this case ρ̂0 is always less
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than ρ̂c
0, and so the separated configuration is preferred. It may be, however, that there

are no solutions with L < π
3 , and that the disconnected solution is only a local minimum.

One could argue this by starting with L very large and bringing the branes together. It is

possible to tunnel from the disconnected to connected solution once L / 1.068R. Then as

one brings the ends closer together, the value of u0 runs off to infinity. In fact, from the

plot in figure 8, it suggests that the effective potential is running off to −∞ for smaller

and smaller values of L. This suggests that the solutions for L < π
3 are only classically

stable, similar to starting with an “inverted wine bottle” φ2 − φ4, and taking φ = 0 as a

solution (when, in fact, it will tunnel out because the potential is unbounded from below).

We therefore take that there are no solutions for L ≤ π
3R; for π

3R < L / 1.068R, chiral

symmetry is broken; and that for L ' 1.068R that chiral symmetry is broken. This similar

to the results of [9] where chiral symmetry was broken for L < 0.97R and restored for

L > 0.97R.

6 Conclusions, and outlook

The above model offers a new dual description of a model in the same universality class as

large Nc QCD with flavors, different from that of the SS model [1, 7, 8]. There are certain

notable similarities and differences. First, the temperature dependence of the theory is

quite striking: a thermal “black brane” background is only available at a specific tempera-

ture T = 1
2πR

. Further, in the deconfined phase, the boundary conditions Li
R

are functions

only of the ratio u0

uT
. This has the interesting quality of making solutions with the same

boundary conditions at infinity easy to find: if one scales uT by a factor C, then one must

also scale u0 by C. This has the effect that varying uΛ with constant boundary conditions

yields no phase transitions: either chiral symmetry is always broken or restored, simply

given the boundary conditions. This allows for the possibility of making such a phase tran-

sition simultaneous. Finally, we should also note the appearance of a finite height effective

potential in the radial direction, giving a finite number of 4D mesons, unlike the case of SS.

There are also some striking similarities. The mechanism for chiral symmetry breaking

in the confined phase is identical to that of the SS model, and easy to visualize. Further,

considering the baryons as instantons in the U(Nf ) world volume gauge field on the D7, an

almost identical mechanism for the baryon size being stabilized arises, and in both cases

the size is of the string scale.

The biggest drawback of our model is the far to simple spectrum of mesons, resulting

from the finite height and flattening of all effective potentials. One may wish to see how one

could modify this setup to allow for a larger spectrum of mesons, possibly for different values

of boundary conditions. More specifically, in the confining phase, it would be interesting

to see what effect turning on P4 would have. Recall that in the anti-podal embedding, the

minimum of the effective potential is reached when the brane reaches all the way down

to uΛ. Further, recall that introducing a non zero P4 does not change this: the brane

still reaches the minimal value u0 = uΛ. So, in such a situation, more effective world

volume of the brane exists near where the bottom of the effective potential exists, possibly

widening the bottom of the effective potential, and leading to more bound states. Such
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an analysis, however, could be quite involved and need to rely on numerical methods. A

further drawback is the possible quantum mechanical instability of the system. It would

be interesting to find solutions to this as well, for example whether the backreaction of the

flavor branes could help cure this problem.

Given the vast number of analysis works of the SS background, there remains many

possibilities for future work. For example, one may be curious to study the meson spectrum

in the deconfining phase similar to [10], particularly to see if one finds similar patterns to

the meson melting found via quasi-normal mode analysis [33], as well as modeling the

condensation of various modes as in [14]. Also, including bare quark mass will have to

follow similar lines as those in the SS model [15, 34], and studies with such deformations.

We have also not addressed any possible transition between the deconfined and confined

phase. In fact, one should imagine tuning the temperature (in the confined phase) all

the way up to T = 1
2πR

. Since this is the only temperature that admits two different

solutions (with the blackening factor) this is the only possible temperature at which a

phase transition happens. Note that quantum mechanically the region T > 1
2πR

does not

exist due the Hagedorn instability (neglecting the backreaction of the flavor branes). Such

a phase transition at T = 1
2πR

would be driven simply by the presence of the flavors (as the

two Euclidean actions would be identical for the gravity sector). We would then have to

subtract the two DBI actions with identical boundary conditions at infinity, but with the

blackening factor on different components of the metric. Inverting the relation between the

boundary conditions Li and the Pi is, however, not straightforward. We hope to return to

these questions in the future.
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